Monday, April 3, 2017

Unizor - Indefinite Integrals - Integration "By Parts"





Notes to a video lecture on http://www.unizor.com

Indefinite Integral -
Integration 'by Parts'
Examples


First, a reminder of integration 'by parts':
 [f(x) · gI(x)] dx = f(x) · g(x) −  [fI(x) · g(x)] dx
Different form of this rule:
 f(x) · dg(x) = f(x) · g(x) −  g(x) · df(x)
A short form can be written as:
 f·dg = f·g −  g·df

Example 1:
 x·ln(x) d
Hint:
f(x)=ln(x) and
dx=dg(x)
Answer:
x²(2ln(x)−1)/4 + C

Example 2:
 ex·cos(x) d
Hint:
Use integration 'by parts' twice.
Answer:
ex(sin(x)+cos(x))/2 + C

Example 3:
 x√x+1 d
Hint:
u=x; dv=√x+1 dx;
v=(2/3)·(x+1)3/2
Answer:
(2/3)·x·(x+1)3/2 − (4/15)·(x+1)5/2 + C

Example 4:
 x·ln²(x) d
Hint:
Integrate 'by parts' twice.Answer:
(1/2)x²ln²(x) − (1/2)x²ln(x) + (1/4)x²+C

Example 5:
 arctan(x) d
Answer:
x·arctan(x) − ln(1+x²)/2 + C

Example 6:
 x·arctan(x) d
Answer:
(x²+1)·arctan(x)/2 − x/2 + C

No comments: