Notes to a video lecture on http://www.unizor.com
Partial Derivatives -
∂²/∂x ∂y = ∂²/∂y ∂x
In the following examples compare
They should be identical.
Example 1
Let z=√x·y
Then
∂z/∂x = y/(2√x·y)
∂²z/∂y ∂x = 1/(4√x·y)
∂z/∂y = x/(2√x·y)
∂²z/∂x ∂y = 1/(4√x·y)
Example 2
Let z=ex·y
Then
∂z/∂x = y·ex·y
∂²z/∂y ∂x = (x·y+1)·ex·y
∂z/∂y = x·ex·y
∂²z/∂x ∂y = (x·y+1)·ex·y
Example 3
Let z=1/(x²+y²)
Then
∂z/∂x = −2x/(x²+y²)²
∂²z/∂y ∂x = 8x·y/(x²+y²)³
∂z/∂y = −2y/(x²+y²)²
∂²z/∂x ∂y = 8x·y/(x²+y²)³
Example 4
Let z=sin(x)/y²
Then
∂z/∂x = cos(x)/y²
∂²z/∂y ∂x = −2cos(x)/y³
∂z/∂y = −2sin(x)/y³
∂²z/∂x ∂y = −2cos(x)/y³
Example 5
Let z=arctan(x√y)
Then
∂z/∂x = √y/(1+x²·y)
∂²z/∂y ∂x = (1−x²·y)/2√y(1+x²·y)²
∂z/∂y = x/[2√y(1+x²·y)]
∂²z/∂x ∂y = (1−x²·y)/2√y(1+x²·y)²
Example 6
Let z=yx
Then
∂z/∂x = yx·ln(y)
∂²z/∂y ∂x = yx−1·(x·ln(y)+1)
∂z/∂y = x·yx−1
∂²z/∂x ∂y = yx−1·(x·ln(y)+1)
No comments:
Post a Comment