Trigonometry+ 02
Problem A
Prove the following trigonometric identities using the Euler formula
ei·φ = cos(φ)+i·sin(φ)
[See lecture on UNIZOR.COM - Math 4 Teens - Trigonometry - Complex Numbers and Trigonometry - Euler's Formula]
sin(x+y) =
= sin(x)·cos(y) + cos(x)·sin(y)
cos(x+y) =
= cos(x)·cos(y) − sin(x)·sin(y)
Proof A
cos(x+y) + i·sin(x+y) =
= ei·(x+y) = ei·x·ei·y =
= [cos(x) + i·sin(x)] ·
· [cos(y) + i·sin(y)]=
=cos(x)·cos(y)+i²sin(x)·sin(y)+
+i·sin(x)·cos(x)+i·cos(x)·sin(y)=
=cos(x)·cos(y)−sin(x)·sin(y)+
+i·[sin(x)·cos(y)+cos(x)·sin(y)]
Problem B
Prove the following trigonometric identities
tan(x+y) = |
|
cot(x+y) = |
|
Proof B
tan(x+y) = |
|
= |
|
= |
|
Problem C
Prove the following trigonometric identities
sin(x) = |
|
cos(x) = |
|
Proof C
sin(x) = sin(½x + ½x)
= 2sin(½x)·cos(½x)
= 2[sin(½x)/cos(½x)]·cos²(½x)
= 2·tan(½x) · cos²(½x)
At the same time
1/[1+tan²(½x)]
= 1/[1+sin²(½x)/cos²(½x)]
= cos²(½x)/[cos²(½x)+sin²(½x)]
= cos²(½x)
No comments:
Post a Comment