Sunday, February 25, 2024

Trigonometry+ 02: UNIZOR.COM - Math+ & Problems - Trigonometry

Notes to a video lecture on http://www.unizor.com

Trigonometry+ 02


Problem A

Prove the following trigonometric identities using the Euler formula
ei·φ = cos(φ)+i·sin(φ)
[See lecture on UNIZOR.COM - Math 4 Teens - Trigonometry - Complex Numbers and Trigonometry - Euler's Formula]

sin(x+y) =
= sin(x)·cos(y) + cos(x)·sin(y)


cos(x+y) =
= cos(x)·cos(y) − sin(x)·sin(y)


Proof A
cos(x+y) + i·sin(x+y) =
= ei·(x+y) = ei·x·ei·y =
=
[cos(x) + i·sin(x)] ·
·
[cos(y) + i·sin(y)]=
=cos(x)·cos(y)+i²sin(x)·sin(y)+
+i·sin(x)·cos(x)+i·cos(x)·sin(y)=
=cos(x)·cos(y)−sin(x)·sin(y)+
+i·
[sin(x)·cos(y)+cos(x)·sin(y)]


Problem B

Prove the following trigonometric identities

tan(x+y) =
tan(x)+tan(y)
1−tan(x)·tan(y)
cot(x+y) =
cot(x)·cot(y)−1
cot(x)+cot(y)

Proof B
tan(x+y) =
sin(x+y)
cos(x+y)
=
sin(x)·cos(y) + cos(x)·sin(y)
cos(x)·cos(y) − sin(x)·sin(y)
Divide numerator and denominator by cos(x)·cos(y)
=
sin(x)/cos(x) + sin(y)/cos(y)
1−sin(x)·sin(y)/(cos(x)·cos(y))
Cotangent formula is proved analogously.


Problem C

Prove the following trigonometric identities
sin(x) =
2·tan(½x)
1+tan²(½x)
cos(x) =
1−tan²(½x)
1+tan²(½x)

Proof C
sin(x) = sin(½x + ½x)
= 2sin(½x)·cos(½x)
= 2
[sin(½x)/cos(½x)]·cos²(½x)
= 2·tan(½x) · cos²(½x)

At the same time
1/[1+tan²(½x)]
= 1/
[1+sin²(½x)/cos²(½x)]
= cos²(½x)/
[cos²(½x)+sin²(½x)]
= cos²(½x)



No comments: